Modulators of heterogeneous protein surface water dynamics > 세미나

본문 바로가기

팝업레이어 알림

팝업레이어 알림이 없습니다.
  • 숙명여자대학교 화학과 대학원
  • 숙명여자대학교
  • 숙명여자대학교 화학과
  • 사이트맵
English
Korea


Information - 세미나
    • 세미나
    • 숙명여자대학교 화학과 대학원의 세미나 소식을 전합니다.
    • Modulators of heterogeneous protein surface water dynamics

      speaker : Prof.Songi Han date : 2017.09.05

      content

      연사: Songi Han(Professor, University of California, Santa Barbara)

      일정: 2017.09.05() 15:00~17:00 과학관 515


      The hydration water that solvates proteins is a major factor in driving or enabling biological events, including protein-protein and protein-ligand interactions. We investigate the role of the protein surface in modulating the hydration water fluctuations on both the picosecond and nanosecond timescale with an emerging experimental NMR technique known as Overhauser Dynamic Nuclear Polarization (ODNP). We carry out site-specific ODNP measurements of the hydration water fluctuations along the surface of Chemotaxis Y (CheY), and correlate the measured fluctuations to hydropathic and topological properties of the CheY surface. Furthermore, we compare hydration water fluctuations measured on the CheY surface to that of other globular proteins, as well as intrinsically disordered proteins, peptides, and liposome surfaces to systematically test characteristic effects of the biomolecular surface on the hydration water dynamics. Our results suggest that the labile (ps) hydration water fluctuations are modulated by the chemical nature of the surface, while the bound (ns) water fluctuations are present on surfaces that feature a rough topology and chemical heterogeneity such as the surface of a folded and structured protein. Moving forward, theory and molecular dynamics simulation will be a critical avenue to obtain a molecular-level understanding of the processes underlying the ODNP-derived heterogeneity in surface water dynamics.  


우) 04310 서울특별시 용산구 청파로47길 100 (청파동2가) 숙명여자대학교 화학과 TEL : 02)710-9413 FAX : 02)2077-7321
COPYRIGHT ⓒ SOOKMYUNG WOMEN'S UNIVERSITY ALL RIGHTS RESERVED.